996 research outputs found

    Reconstructing mass profiles of simulated galaxy clusters by combining Sunyaev-Zeldovich and X-ray images

    Full text link
    We present a method to recover mass profiles of galaxy clusters by combining data on thermal Sunyaev-Zeldovich (tSZ) and X-ray imaging, thereby avoiding to use any information on X-ray spectroscopy. This method, which represents a development of the geometrical deprojection technique presented in Ameglio et al. (2007), implements the solution of the hydrostatic equilibrium equation. In order to quantify the efficiency of our mass reconstructions, we apply our technique to a set of hydrodynamical simulations of galaxy clusters. We propose two versions of our method of mass reconstruction. Method 1 is completely model-independent, while Method 2 assumes instead the analytic mass profile proposed by Navarro et al. (1997) (NFW). We find that the main source of bias in recovering the mass profiles is due to deviations from hydrostatic equilibrium, which cause an underestimate of the mass of about 10 per cent at r_500 and up to 20 per cent at the virial radius. Method 1 provides a reconstructed mass which is biased low by about 10 per cent, with a 20 per cent scatter, with respect to the true mass profiles. Method 2 proves to be more stable, reducing the scatter to 10 per cent, but with a larger bias of 20 per cent, mainly induced by the deviations from equilibrium in the outskirts. To better understand the results of Method 2, we check how well it allows to recover the relation between mass and concentration parameter. When analyzing the 3D mass profiles we find that including in the fit the inner 5 per cent of the virial radius biases high the halo concentration. Also, at a fixed mass, hotter clusters tend to have larger concentration. Our procedure recovers the concentration parameter essentially unbiased but with a scatter of about 50 per cent.Comment: 13 pages, 11 figures, submitted to MNRA

    Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach

    Full text link
    We analyze the geometric aspects of unitary evolution of general states for a multilevel quantum system by exploiting the structure of coadjoint orbits in the unitary group Lie algebra. Using the same method in the case of SU(3) we study the effect of degeneracies on geometric phases for three-level systems. This is shown to lead to a highly nontrivial generalization of the result for two-level systems in which degeneracy results in a "monopole" structure in parameter space. The rich structures that arise are related to the geometry of adjoint orbits in SU(3). The limiting case of a two-level degeneracy in a three-level system is shown to lead to the known monopole structure.Comment: Latex, 27 p

    Phenotypic matching by spot pattern potentially mediates female giraffe social associations

    Full text link
    Animal color pattern is a phenotypic trait that may mediate assortative mixing (also known as homophily), whereby similar looking individuals have stronger social associations. Masai giraffe (Giraffa camelopardalis tippelskirchi) coat spot patterns show high variation and some spot traits appear to be heritable. Giraffes also have high visual acuity, which may facilitate intraspecific communication and recognition based on spot patterns. Giraffe groupings are dynamic, merging and splitting throughout the day, but females form long-term associations. We predicted that adult female giraffes show stronger associations with other females that have similar spot pattern traits. We quantified the spot pattern characteristics of 399 adult female Masai giraffes and determined the pattern similarity among pairs (dyads) in their social network. We then tested for an association between coat pattern similarity (spot size, shape, and orientation) and dyadic association strength, and quantified assortative mixing. The strength of social associations was positively correlated with similarity in spot shape. Our results are compatible with assortativity by coat patterns that are similar between mother and offspring, potentially reflecting an effect of relatedness on both pattern similarity and female social associations. These results offer evidence that spot pattern could function as a visual cue for intraspecific communication and kin or individual recognition in a fission-fusion species

    Catalyst-Controlled Wacker-Type Oxidation: Facile Access to Functionalized Aldehydes

    Get PDF
    The aldehyde-selective oxidation of alkenes bearing diverse oxygen groups in the allylic and homoallylic position was accomplished with a nitrite-modified Wacker oxidation. Readily available oxygenated alkenes were oxidized in up to 88% aldehyde yield and as high as 97% aldehyde selectivity. The aldehyde-selective oxidation enabled the rapid, enantioselective synthesis of an important pharmaceutical agent, atomoxetine. Finally, the influence of proximal functional groups on this anti-Markovnikov reaction was explored, providing important preliminary mechanistic insight

    Structure-Based Optimization of a Non-\u3b2-lactam Lead Results in Inhibitors That Do Not Up-Regulate \u3b2-Lactamase Expression in Cell Culture

    Get PDF
    Bacterial expression of \u3b2-lactamases is the most widespread resistance mechanism to \u3b2 -lactam antibiotics. There is a pressing need for novel, non-\u3b2-lactam inhibitors of these enzymes. Our lead, compound 1, is chemically dissimilar to \u3b2 -lactams and is a noncovalent, competitive inhibitor of the enzyme. However, at 26 \u3bcM its activity is modest (Figure 1). Using the X-ray structure of the AmpC/1 complex as a template, 14 analogues were designed and synthesized. Among these, compound 10, had a Ki of 1 \u3bcM, 26-fold better than the lead. The structures of AmpC in complex with compound 10 and an analogue, compound 11, were determined by X-ray crystallography to 1.97 and 1.96 \uc5, respectively. Compound 10 was active in cell culture, reversing resistance to the third generation cephalosporin ceftazidime in bacterial pathogens expressing AmpC. In contrast to \u3b2-lactam-based inhibitors compound 10 did not up-regulate \u3b2-lactamase expression in cell culture but simply inhibited the enzyme expressed by the resistant bacteria. Its escape from this resistance mechanism derives from its dissimilarity to \u3b2 -lactam antibiotics

    Single-shot convolution neural networks for real-time fruit detection within the tree

    Get PDF
    Image/video processing for fruit detection in the tree using hard-coded feature extraction algorithms has shown high accuracy on fruit detection during recent years. While accurate, these approaches even with high-end hardware are still computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks architecture based on single-stage detectors. Using deep-learning techniques eliminates the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This architecture takes the input image and divides into AxA grid, where A is a configurable hyper-parameter that defines the fineness of the grid. To each grid cell an image detection and localization algorithm is applied. Each of those cells is responsible to predict bounding boxes and confidence score for fruit (apple and pear in the case of this study) detected in that cell. We want this confidence score to be high if a fruit exists in a cell, otherwise to be zero, if no fruit is in the cell. More than 100 images of apple and pear trees were taken. Each tree image with approximately 50 fruits, that at the end resulted on more than 5000 images of apple and pear fruits each. Labeling images for training consisted on manually specifying the bounding boxes for fruits, where (x, y) are the center coordinates of the box and (w, h) are width and height. This architecture showed an accuracy of more than 90% fruit detection. Based on correlation between number of visible fruits, detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Processing speed is higher than 20 FPS which is fast enough for any grasping/harvesting robotic arm or other real-time applications. HIGHLIGHTS: Using new convolutional deep learning techniques based on single-shot detectors to detect and count fruits (apple and pear) within the tree canopy

    Temozolomide is additive with cytotoxic effect of irradiation in canine glioma cell lines

    Get PDF
    Background: Similar to human glioblastoma patients, glial tumours in dogs have high treatment resistance and a guarded prognosis. In human medicine, the addition of temozolomide to radiotherapy leads to a favourable outcome in vivo as well as a higher antiproliferative effect on tumour cells in vitro. Objectives: The aim of the study was to determine the radio- and temozolomide-sensitivity of three canine glial tumour cell lines and to investigate a potential additive cytotoxic effect in combined treatment. Additionally, we wanted to detect the level of MGMT promoter methylation in these cell lines and to investigate a potential association between MGMT promoter methylation and treatment resistance. Methods: Cells were treated with various concentrations of temozolomide and/or irradiated with 4 and 8 Gy. Radiosensitization by temozolomide was evaluated using proliferation assay and clonogenic assay, and MGMT DNA methylation was investigated using bisulfite next-generation sequencing. Results: In all tested canine cell lines, clonogenicity was inhibited significantly in combined treatment compared to radiation alone. All canine glial cell lines tested in this study were found to have high methylation levels of MGMT promoter. Conclusions: Hence, an additive effect of combined treatment in MGMT negative canine glial tumour cell lines in vitro was detected. This motivates to further investigate the association between treatment resistance and MGMT, such as MGMT promoter methylation status

    Coupling parameters and the form of the potential via Noether symmetry

    Get PDF
    We explore the conditions for the existence of Noether symmetries in the dynamics of FRW metric, non minimally coupled with a scalar field, in the most general situation, and with nonzero spatial curvature. When such symmetries are present we find general exact solution for the Einstein equations. We also show that non Noether symmetries can be found. Finally,we present an extension of the procedure to the Kantowski- Sachs metric which is particularly interesting in the case of degenerate Lagrangian.Comment: 13 pages, no figure
    corecore